KMMX - Centro de Capacitación en Ti, Web y Mobile

      Introducción a Data Science con R

      KMMX - Centro de Capacitación en Ti, Web y Mobile
      En línea

      $ 11,600
      Si gustas, puedes llamar al centro en este momento

      Información importante

      Tipología Capacitación laboral
      Metodología En línea
      Horas lectivas 40h
      Inicio Fechas a escoger
      • Capacitación laboral
      • En línea
      • 40h
      • Inicio:
        Fechas a escoger
      Descripción

      El Data Science, o “Ciencia de los datos” en español, es el estudio de la extracción generalizada del conocimiento a partir de información o datos, aunque la palabra comúnmente utilizada es ciencia. Este incorpora elementos variables y construcciones a partir de técnicas y teorías de muchos campos, los cuales van desde el procesamiento de señales, matemáticas, modelos de probabilidad y estadística, ingeniería de datos, programación de sistemas, aprendizaje máquina o inteligencia artificial, reconocimiento y aprendizaje de patrones, visualización, datawarehousing, inteligencia de negocios, cómputo de alto performance, etc. con el objetivo común de extraer significados de la información y crear productos de datos. Mediante el Data Science el comercio y la investigación están siendo transformados debido al descubrimiento y la predicción basada en datos. Habilidades requeridas para el análisis de datos a niveles masivos, gestión escalable de datos dentro y fuera de la nube, elaborando algoritmos paralelos y un modelado estadístico y de competencia con un complejo ecosistema de herramientas y plataformas.

      Instalaciones (1) y fechas
      Dónde se imparte y en qué fechas
      Inicio Ubicación
      Fechas a escoger
      En línea
      Inicio Fechas a escoger
      Ubicación
      En línea

      A tener en cuenta

      · ¿Cuáles son los objetivos de este curso?

      El asistente aprenderá a formular preguntas relevantes desde el punto de vista contextual e hipótesis que impulsen a la investigación científica de datos. Identificar, obtener y transformar un conjunto de datos para hacerlo utilizable para la producción de evidencia estadística y su comunicación a través de la vía escrita. Construir modelos basados en nuevos tipos de datos, diseño experimental e inferencia estadística.

      · ¿A quién va dirigido?

      Programadores y Desarrolladores.

      Preguntas & Respuestas

      Plantea tus dudas y otros usuarios podrán responderte

      ¿Qué aprendes en este curso?

      programacion
      Modelado

      Programa académico

      Parte 1 - Introducción

      Ejemplos | Ciencia de datos articulada | Historia y contexto | Panorama de la tecnología | Bases de datos y su evolución, Big Data y Tendencias

      Parte 2 - Manipulación de datos con R

      Introducción a R | Instalación y preparación de R | Vectores en R | Matrices en R | Listas en R | DataFrames en R | Sentencias de control en R | Funciones en R | I/O en R | Graficación en R | Programación orientada a objetos en R

      Parte 3 - Analíticas

      Modelado básico estático | Diseño experimental | Sobreajustes | Modelos de regresión | Gráficas analíticas | Búsquedas recursivas | Procesando iterativamente | Analíticas de texto, semántica | Filtro colaborativo: slope-one | Inferencias estadísticas

      Parte 4 - Comunicando resultados

      Visualización | Productos de datos | Analíticas visuales de datos | Privacidad y gobernanza


      Compara para elegir mejor:
      Ver más cursos similares