Administración de Riesgos

RiskMathics Financial Innovation
En Huixquilucan

$ 78,000
más IVA
¿Quieres hablar con un Asesor sobre este curso?

Información importante

Tipología Diplomados
Dirigido a Para profesionales
Inicio Huixquilucan
Horas lectivas 357h
  • Diplomados
  • Para profesionales
  • Huixquilucan
  • 357h
Descripción

Objetivo del curso: Brindar a los participantes las herramientas, técnicas y fundamentos que requieren actualmente las Instituciones Financieras, Corporativos y la industria en general para contar con Administradores Integrales de Riesgos. El Diplomado pretende formar, con reconocidas Autoridades en la materia en el ámbito local e internacional, a la nueva generación de Administradores de Riesgos y no únicamente de 'Medidores de Riesgos', es por ello que el programa presenta un balance entre las dos escuelas. Destinatarios del curso: Este Diplomado esta dirigido a Bancos, Corporativos, Afores, Aseguradoras, Tesorerías, Reguladores, Casas de Bolsa, Fondos de Inversión y a toda persona que esté involucrada con el medio financiero y/o académico que quiera especializarse en el medio financiero.

Instalaciones

Dónde se imparte y en qué fechas

Inicio Ubicación
Consultar
Huixquilucan
Av. Lomas Anahuac, S/N, Col. Lomas Anáhuac, 52786, Estado de México, México
Inicio Consultar
Ubicación
Huixquilucan
Av. Lomas Anahuac, S/N, Col. Lomas Anáhuac, 52786, Estado de México, México

Preguntas Frecuentes

· Requisitos

Para lograr un óptimo aprovechamiento a lo largo del Diplomado, se recomienda a los participantes ser egresados de áreas de carreras económico-administrativas, contar con una formación Matemática de nivel medio y/o superior, y/o tener experiencia profesional dentro de instituciones del medio financiero. Es fundamental que el participante cuente con Computadora Personal (Lap Top) con tarjeta de red inalámbrica para los módulos y talleres en donde sea requerida.

Profesores

Abraham Izquierdo
Abraham Izquierdo
JP Morgan

Abraham Izquierdo es el encargado de Riesgo de Mercado para JPMorgan Chase en el equipo de América. Anteriormente fungía como Subdirector de Riesgos en el Grupo Bolsa Mexicana de Valores, donde fortalecía y daba seguimiento a los principales estándares internacionales del Marco Integral de Administración de Riesgos de la Cámara de Compensación del Mercado Mexicano de Derivados. Asimismo coordinaba el Subcomité de Admisión y Administración de Riesgos.

Alfonso De Lara Haro
Alfonso De Lara Haro
Dr Ejecutivo de Administración de Riesgos

Ingeniero Industrial graduado con mención honorífica en la Universidad Nacional Autónoma de México (1978-1982). Estudió una Maestría en Administración en el ITAM (1984-1987) y una Maestría en Finanzas en el ITAM (1993-1995). En 1992 estudió cursos de posgrado de finanzas en Northwestern University (Kellogg Graduate School of Business), Chicago. Adicionalmente ha estudiado otros cursos especializados de finanzas en Nueva York y Chicago.

Alfonso De Lara Haro
Alfonso De Lara Haro
Grupo Financiero Scotiabank Inverlat

Alfonso De Lara Haro es Ingeniero Industrial graduado con mención honorífica en la Universidad Nacional Autónoma de México (1978-1982). Estudió una Maestría en Administración en el ITAM (1984-1987) y una Maestría en Finanzas en el ITAM (1993-1995). En 1992 estudió cursos de posgrado de finanzas en Northwestern University (Kellogg Graduate School of Business), Chicago. Adicionalmente ha estudiado otros cursos especializados de finanzas en Nueva York y Chicago.

Javier García
Javier García
Socio (Instituciones Financieras y Gobierno Corporativo)

Javier García ha sido responsable de asesorías a corporativos nacionales e internacionales en proyectos referentes a: diagnósticos de mejores prácticas de gobierno corporativo, institucionalización de consejos de administración y órganos de gobierno (empresas públicas y privadas), planeación estratégica (value map methodology), reingeniería, soporte a comités de planeación.

José Carlos Ramírez
José Carlos Ramírez
Universidad Anáhuac Norte

Licenciado en Matemáticas y en Economía, Maestro en Demografía y en Economía y Doctor por la Universidad de Sussex (IDS) Inglaterra en 1995. Actualmente es Profesor de Matemáticas del Departamento de Economía de la Universidad Anáhuac. Entre los logros personales destaca la obtención de una Mención Honorífica en el Premio Nacional de Investigación y Desarrollo Tecnológico 1997, convocado por el Consejo Consultivo SEP-CONACYT; Tercer lugar en el Premio Rómulo Garza 2005.

Programa académico

PROPEDÉUTICO PARTE A: ÁLGEBRA

1. Repaso de álgebra elemental: operaciones con expresiones algebráicas. exponentes y radicales. productos notables. factorización. fracciones algebráicas. ecuaciones lineales con una variable

2. Conjuntos e intervalos: teoría de conjuntos: definición por enumeración y propiedad, subconjuntos, operaciones y diagramas de venn. subconjuntos en: intervalos abiertos, cerrados, semi abiertos y no acotados

3. Desigualdades y valor absoluto: desigualdades lineales de una variable. ecuaciones con valor absoluto. desigualdades con valor absoluto

4. Sumas y productos: notación sumatoria, reglas de las sumas, sumas dobles, productos

5. Álgebra matricial: matrices: definición, matrices especiales, operaciones básicas, determinantes (2´2, 3´3, fórmula general), definición de matriz inversa y propiedades. sistemas de ecuaciones lineales: solución usando inversas

6. Funciones y su graficación: definición de función. operaciones con funciones (sumas, productos y composiciones). representación gráfica. simetría, traslaciones y reflexiones. funciones lineales, cuadráticas, polinómicas, racionales, exponenciales, logarítmicas. límites. continuidad

7. Cálculo diferencial: derivadas, reglas de derivación, derivadas parciales, derivadas de orden superior

8. Cálculo integral: integrales indefinidas. técnicas de integración (sustitución, por partes). integrales definidas: integral de riemann. concepto de integral como área bajo la curva. teorema fundamental del cálculo. propiedades. integrales impropias. integrales múltiples

PROPEDÉUTICO PARTE B: CÁLCULO

8. Estadística: introducción, aplicaciones, estadística descriptiva. Uso de paquetería computacional

9. Estadística descriptiva: población, muestra y variable estadística, métodos de muestreo, análisis univariado y bivariado: medidas descriptivas, gráficas

10. Probabilidad e inferencia. Tipos de probabilidad, experimento, evento y espacio muestral. Eventos mutuamente excluyentes y no excluyentes. Reglas de la adición. Eventos independientes, probabilidad condicional. Reglas de la multiplicación. Regla de Bayes. Tablas de probabilidad conjunta. Permutaciones y combinaciones

11. Distribuciones de probabilidad: binomial y poisson (variables aleatorias discretas) uniforme, normal, Gamma, exponencial, ji-cuadrada (variables aleatorias

Continuas). Distribuciones muestrales y el teorema Central del límite

12. Estimación y pruebas de hipótesis: estimación puntual y por intervalos, pruebas de hipótesis

13. Métodos intensivos en cómputo: simulación de monte Carlo, bootstrapping

14. Análisis de regresión lineal: estimación por mínimos

MÓDULO I: ESTADÍSTICA MATEMÁTICA

1. Introducción, Conseptos

2. Estadística Descriptiva

2.1 Análisis Exploratorio para una Variable

2.2 Normalidad

2.3 Análisis Exploratorio para dos Variables. Covarianza y Correlación

2.4 Análisis Exploratorio en Varias Variables. Matriz de Varianzas-Covarianzas.

Matriz de Correlación

3. Introducción a la estadística inferencial

3.1 Muestra y Población. Estadísticos y Parámetros

4. Elementos de probabilidad

4.1 Experimento, Espacio Muestral y Evento

4.2 Enfoque Clásico

4.3 Enfoque Frecuentista

4.4 Enfoque Subjetivo

4.5 Axiomas de la Probabilidad

4.6 Relaciones Básicas de la Probabilidad

4.7 Probabilidad Condicional e Independencia

4.8 Tablas de Contingencia

4.9 Teorema de Bayes

5. Variables aleatorias

5.1 Variable Aleatoria Discreta

5.1.1 Valor Esperado

5.1.2 Momentos

5.1.3 Función de Probabilidad y Función de Distribución

5.2 Variable Aleatoria Continua

5.2.1 Valor Esperado

5.2.2 Momentos

5.2.3 Función de Densidad y Función de Distribución

5.3 Teorema de Chebyshev

5.4 Variable Aleatoria Estandarizada

6. Distribuciones de probabilidad

6.1 Discretas: Bernoulli, Binomial, Binomial Negativa, Geométrica, Hipergeométrica y Poisson

6.2 Continuas: Uniforme, Normal, Normal Estándar, Exponencial, Gamma, Beta, Weibull, Frechet, Gompertz

7. Estimación

7.1 Estimación Puntual

7.2 Estimación por Intervalo

8. Distribuciones de muestreo

8.1 Teorema Central del Límite

8.2 Distribución T de Student

8.3 Distribución x2

8.4 Distribución F

9. Intervalos de confianza

9.1 Media

9.2 Diferencia de Medias

9.3 Proporción

9.4 Diferencia de Proporciones

9.5 Varianza

9.6 Cociente de Varianzas

10. Pruebas de hipótesis

10.1 Consecuencias de las Decisiones

10.2 Errores Tipo I y Tipo II

10.3 Media

10.4 Diferencia de Medias

10.5 Proporción

10.6 Diferencia de Proporciones

10.7 Varianza

10.8 Cociente de Varianzas

MÓDULO II: ADMINISTRACIÓN DE RIESGOS PARA CORPORATIVOS

1. Introducción a las finanzas corporativas

2. Elementos fundamentales de ánalisis

2.1 Análisis de Estados Financieros y Planeación Financiera

2.2 Valor del Dinero en el Tiempo y VPN

2.3 Valuación de Acciones y Bonos

2.4 Teoría Básica de Administración de Portafolios (Rendimiento y Riesgo)

2.5 Valor En Riesgo (Var)

3. Instrumentos de cobertura para riesgos financieros

3.1 Cobertura de Ingresos, Costos e Inventarios

3.2 Cobertura de Apalancamiento Financiero

3.3 Cobertura de Apalancamiento Operativo

3.4 Valuación de Acciones Y Bonos

3.5 Opciones

3.6 Forwards Y Futuros

3.7 Swaps

4. Presupuesto de capital

4.1 Evaluación de Proyectos De Inversión

4.2 El Costo Promedio Ponderado de Capital y el Efecto del Apalancamiento

4.3 Análisis De Riesgo En Proyectos De Inversión

4.4 Opciones Reales

5. Estructura de capital

5.1 Proposiciones de Modigliani Miller

5.2 Límites al Uso de Deuda

5.3 Riesgo Financiero y Riesgo de Negocio

5.4 Estructura de Capital y Opciones

6. Estudios de caso

6.1 Riesgo de Una Empresa con Especulación Financiera

6.2 Riesgo en una Empresa por Uso Erróneo de Derivados

6.3 Riesgo de una Empresa por Estrategia de Negocios

6.4 Riesgo de un Banco

MÓDULO III: FUNDAMENTALES CUANTITATIVOS EN ADMINISTRACIÓN DE RIESGOS

1. Problemas con diferencia de modelos financieros-martingalas continuas

2. Necesidad de la formula de ito

3. Espacios probabilísticos

4. Variables aleatorias

5. Independencia y dependencia

6. Variables aleatorias importantes en administración de riesgos

MÓDULO IV: PROCESOS ESTOCÁSTICOS

1.Introducción: definición y clasificación de los procesos estocasticos (pe). Usos y limitaciones más comunes de los pe en los análisis de valor en riesgo y fijación de precios de los activos financieros

2. Repaso de las nociones básicas de probabilidad y teoría de la medida necesarias para caracterizar a los pe: sigmas-algebras; medidas y espacio de medidas; convergencia en probabilidad; medidas y funciones de distribución; independencia estocástica; identificación de procesos; integrales de tiempo e integrales estocásticas

3. Caracterización de los principales pe discretos y continuos utilizados en finanzas: procesos de poisson (homogéneos, no homogéneos y compuestos); procesos de markov (cadenas de markov, cadenas de markov en tiempo continuo y procesos de decisión de markov); caminatas aleatorias (rwi, rw2 y rw3), movimiento brownianos (brownianos absorbidos a un valor, brownianos reflejados en el origen; brownianos geométricos y brownianos integrados) y martingalas (semimartingalas, submartingalas y supermartingalas)

4.El estudio por menorizado de un pe popular en la administración de riesgos: cadenas de markov y sus aplicaciones. Definiciones básicas; transiciones de múltiples etapas, clasificación de estados (transitorios y recurrentes) y conducta del estado estable . Aplicaciones para el caso de retención de clientes en un banco, pronósticos de rendimientos y cálculo de riesgo de crédito

5. Optimización de modelos financieros estocásticos: elementos de cálculo de ito (lema de ito; integrales con respecto a pe de ito; teorema de girsanov); optimización estocástica (hamiltonianos en ambientes estocásticos y/o la ecuación de bellman ampliada con procesos de difusión con saltos) y equilibrios estocásticos

MÓDULO V-A: MARKETS I - FIXED INCOME, EQUITY & FX

FIXED INCOME

1. Participantes del mercado

1.1 Clasificación

1.2 Objetivo

2. Clasificación de los instrumentos

3. Subastas primarias (banxico)

4. Cálculo de bonos

5. Duración

6. Duración modificada

7. Convexidad

8. Pvbp o dv01

9. Bonos bullet vs. Bonos barbell

10. El dinero en el tiempo

10.1Interés anual

10.2 Interés compuesto

10.3 Tasas equivalentes

10.4 Estructura temporal de tasas

10.5 Interpolaciones y bootstrapping

10.6 Curva con bonos cero

10.7 Curva con bonos par

11. Estructura temporal de tasas

11.1 Interpolaciones y bootstrapping

11.2 Curva con bonos cero

11.3 Curva con bonos par

FX

1. Estructura del mercado cambiario global y local

1.1 Participantes

1.2 Instituciones

2. Trading

EQUITY

1. Mercado de capitales

1.1Estructura

1.2 Instrumentos

1.3 Valores negociados en bolsa

1.4 Participantes del mercado de renta variable

2. Operación y trading en el mercado de capitales

MÓDULO V- B: MARKETS II – DERIVADOS

1. Forwards

1.1 Componentes del precio

1.2 Acciones e índices

1.3 Monedas

1.3.1 Estrategias y coberturas

1.3.2 FX swaps

1.3.3 Aplicaciones

1.4 Tasas de interés

1.4.1 Estrategias y usos

1.4.2 Tasas forward

2. Futuros

2.1 Acciones e Índices

2.2 Mercancías

2.3 Bonos

2.4 Tasas de Interés

3. Swaps

3.1 Swaps de Tasas de Interés

3.1.1 Estructura y usos

3.1.2 Curvas implícitas

3.1.3 Cotización y cobertura

3.1.4 Valuación y riesgos

3.2 Swaps de Monedas

3.2.1 Tipos de contratos y aplicaciones

3.2.2 Basis swaps

4. Opciones

4.1 Fundamentos

4.2 Cobertura y Estrategias

4.3 Monedas y Tasas de Interés

4.4 Sensibilidades y Riesgos

4.5 Exóticas

5. Productos estructurados

MÓDULO VI: INTRODUCCIÓN AL CONTROL ÓPTIMO Y TEORÍA DE JUEGOS

1. Introducción

Parte 1: problemas de control óptimo (juegos con un jugador)

2. Definición del problema de control óptimo

2.1 procesos de markov

2.2 procesos de control markovianos

3. El principio del máximo

4. Programación dinámica

5. Control minimax (juegos contra la naturaleza)

Parte 2: juegos cooperativos

6. Equilibrios de pareto

7. Equilibrios de compromiso

8. El problema de negociación de nash

Parte 3: juegos no–cooperativos

9. Equilibrios de nash 59

10. Juegos simétricos y de suma cero

11. Juegos de stackelberg

MÓDULO VII: RIESGO DE CRÉDITO (INDIVIDUAL Y DE PORTAFOLIO)

1. Riesgo, riesgo de crédito y administración de riesgos

1.1 Tipos de riesgo

1.2 Elementos para enfrentar el riesgo de crédito

2. Crédito comercial (empresas)

2.1 Determinación del nivel de riesgo del deudor

2.2 Determinación del nivel de riesgo de los créditos

2.3 Validación y calibración de un “rating” de riesgo de crédito

3. Crédito al consumo

3.1 Modelos de puntaje (credit scoring)

3.2 Modelos expertos con base a datos sociodemográficos

3.3 Modelos estadísticos

3.4 Validación y calibración de modelos

3.5Roll rates, vintages, portfolio mix

4. Medición del riesgo de crédito individual

4.1 Ead, exposición al incumplimiento

4.2 Pd, probabilidad de incumplimiento

4.3 Lgd, severidad de la pérdida

5. El, pérdida esperada individual

MODELOS RIESGO DE CRÉDITO DE PORTAFOLIO

1. Principios de administración de riesgo de crédito

1.1 pérdida esperada

1.2 pérdida no esperada

1.3 capital regulatorio e iniciativas de basilea

2. Modelos de medición

2.1 modelo de merton

2.2 kmv

2.3 creditmetrics™

2.4 creditportfolioview

2.5 the creditrisk+ model

MÓDULO VIII: RIESGO DE MERCADO, STRESS & BACK TESTING

1. Introducción y nociones fundamentales

1.1 Panorama general de la administración del riesgo mercado en bancos, portafolios de inversión y corporativos no financieros

1.2 Definición económica y matemática del valor en riesgo

1.3 Conceptos esenciales detrás del var

1.4 Instrumentos lineales, no lineales e identificación de factores de riesgo

1.5 Medidas coherentes de riesgo

2. Métodos paramétricos lineales para la estimación del valor en riesgo

2.1 La fórmula del var normal

2.2 Mapeo de posiciones y el VaR de tasas de interés

2.3 El análisis de componentes principales en la determinación del VaR

2.4 Metodología de risk metrics tm

2.5 Mezclas y distribuciones alternativas en el cálculo del VaR

2.6 VaR incremental y VaR condicional

3. Simulación histórica y simulación montecarlo

3.1 El modelo histórico con ponderación equitativa

3.2 La introducción de actualización de volatilidad de hull y white

3.3 El enfoque hybrido de boudoukh, richardson y whitelaw

3.4 Aproximaciones basadas en teoría de valores extremos

3.5 La expansión de cornish-fisher

3.6 Generación de trayectorias de precios y tasas de interés

3.7 El VaR monte carlo en un entorno multivariante

4. Valor en riesgo de portafolios compuestos por instrumentos no lineales

4.1 Aproximación delta y el VaR delta normal

4.2 El efecto gamma y el VaR delta gamma

4.3 El método full-valuation

4.4 Capturando no normalidad y extendiendo a riesgo vega

5. Herramientas de seguimiento y evaluación del valor en riesgo

5.1 Lineamientos regulatorios para el análisis de los modelos de riesgo mercado

5.2 Métodos de evaluación basados en técnicas econométricas

5.3 Pruebas basadas en distribuciones de probabilidad

6. Técnicas complementarias (stress testing)

6.1 Generación y elección de escenarios extremos

6.2 Lineamientos regulatorios y principios en materia de stress testing

6.3 Análisis de escenarios, análisis de sensibilidad y métodos alternativos

MÓDULO IX-A: RIESGO OPERACIONAL (UN ENFOQUE GLOBAL)

1. ¿qué es el riesgo operacional?

1.1 una primera aproximación al riesgo operacional.

1.2 bases de datos de riesgo operacional.

1.3 la definición de basilea ii y basilea iii

1.4 riesgo operacional y otros riesgos.

2. Un marco para el tratamiento del riesgo operacional

2.1 líneas de negocio y tipos de riesgo.

2.2 severidad y frecuencia.

2.3 clasificación de riesgos.

3. Bases de datos internas de riesgo operacional

3.1 diseño de la base de datos interna

3.2 su utilidad para la gestión

4. Enfoques y metodologías

4.1 modelos top-down y modelos bottom-up

4.2 los distintos enfoques: indicadores de riesgo, redes causales y modelos actuariales

4.3 pérdida esperada y pérdida no esperada

5. Basilea ii y iii

5.1 los tres pilares

5.2 el modelo básico (análisis crítico)

5.3 el modelo estándar y estándar alternativo (análisis crítico)

5.4 un modelo útil a fines pedagógicos: el modelo ima

5.5 el enfoque distribución de pérdidas: conceptos básicos

5.6 crítica del uso de la distribución de pareto

6. Asignación de capital económico

6.1 la asignación de capital como elemento de gestión

6.2 el método de euler

7. Enfoques cualitativos

7.1 ajustes cualitativos

7.2 enfoque scorecard

8. Bases de datos externas

8.1 ¿a qué se le dice basilea ii y qué cambios incorpora basilea iii?

8.2 ¿a qué consorcios acudir?

8.3 el papel de los umbrales

8.4 el escalado de datos externos: necesidad y procedimientos

8.5 simulaciones bayesianas

8.6 stress testing y back testing

9. Prevención del riesgo operacional

9.1 métodos de control

9.2 uso de seguros

10. Enfoque práctico hacia un mapa de riesgos

10.1 análisis de los procesos

10.2 eventos de riesgo

10.3 mapas de riesgos y clasificación de los mismos

11. Enfoque scorecard en la práctica

11.1 un ejemplo concreto

11.2 construcción de un scoring de riesgo operacional

11.3 los factores que afectan

11.4 perímetro de un proyecto de scorecard exitoso

12. Indicadores de riesgo

12.1 indicadores de riesgo operacional.

12.2 kri’s y krd’s

12.3 agregación de indicadores y niveles de alarma.

12.4 como abordar un proyecto de kri’s

14. Aspectos organizativos

14.1 el papel de la alta dirección

14.2 la necesidad de una dirección de riesgo operacional

14.3 otros actores

15. Talleres:

15.1 el modelo ima

15.2 enfoques de supervisión

15.3 demo de un ajuste de severidad frecuencia en la práctica con opvision

15.4 un modelo para el riesgo legal

15.4.1 definiendo el riesgo legal

15.4.2 los costes del riesgo legal

15.4.3 ¿hacia un rating legal?

MÓDULO IX-B: RIESGO OPERACIONAL (MODELOS AVANZADOS E INNOVACIONES DE OPRISK)

• The evolution of the regulatory environment - Catching up with the banks

1. Risk database operational

1.1 The hurdles of collecting operational losses

1.2 Classifying operational losses: internal VS regulatory

1.3 The importance of key risk indicators

1.4 Developing scenario analysis and stress tests

1.5 How to develop and efficient risk control self-assessment

1.6 How external data can be efficiently used in the framework

2. Quantitative methods to measure and manage operational risk

2.1 Developing a regulatory approved VaR framework to measure OR

2.2 Using all data elements in the OR calculation

2.3 Building causal models: how key these models are for an efficient operational risk framework

2.4 Real examples with real data

3. Hedging operational risk

3.1 What are the current options to hedge operational risk

3.2 OR Derivatives: when and if these will be available

3.3 Developing a hedging program for your firm using current options

MÓDULO X: MATLAB (PROGRAMACIÓN, DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES PARA RIESGOS)

1. Bases iniciales de MATLAB

Objetivo:

Dar al participante bases sólidas del uso de MATLAB, abarcando desde un

enfoque básico hasta un intermedio donde el alumno tenga la capacidad de realizar

programas sencillos pero con las bases suficientes para que por su parte pueda

descubrir mayores aplicaciones

2. Probabilidad y estadística con MATLAB

Objetivo:

Mostrar el uso potencial de Probabilidad y Estadística con MATLAB, mostrando ejemplos y realizando ejercicios prácticos para su completo entendimiento. Además de conocer la herramienta Statistics toolbox

3. Fixed Income

Objetivo:

Aplicar la teoría del Fixed Income utilizando Matlab y proporcionando al participante una perspectiva clara de las aplicaciones de dicho tema, además de utilizar la herramienta de Matlab Fixed Income

4. Riesgo de mercado

Objetivo:

Iniciar al participante con la modelación computacional referente al riesgo de mercado, este tema revisará temas como simulación histórica, Modelos Montecarlo, modelos lineales y cuadráticos así como pruebas de estrés

5. Riesgo de crédito

Objetivo:

Continuar con la modelación computacional referente a riesgo de crédito, llevando acabo simulaciones históricas y Montecarlo, además de construir una matriz de transición

6. Ejercicio integral

El objetivo de este apartado es llevar a cabo un ejercicio integral donde cada participante tomará la decisión de desarrollar un tema de su interés utilizando la herramienta de Matlab

MÓDULO XI: ASSET & LIABILITY MANAGEMENT

1. Distribución de ingresos y transferencia de riesgos

2. Capital regulatorio y aplicaciones

2.1 Alternativas de Capital

2.2 Capital Básico y Complementario

2.3 RAROC para pricing. (Regulatorio y Económico)

3. Herramientas de control y gestión del riesgo de tasa y liquidez

3.1 GAP

3.1.1 Coberturas de Tasas de Interés

3.1.2 Administración del GAP de tasas de interés

3.1.3 Administración del Gap de Duración

3.2 Sensibilidades

3.3 Razones de liquidez

3.4 Margen

4. Derivados de cobertura para la gestión del balance.

4.1 Coberturas de Valor

4.2 Coberturas de Flujo de efectivo

5. Alco

6. Uso del registro contable para el manejo del balance y su afectación en resultados y capital

MÓDULO XII: BASILEA II Y III:

1. Los acuerdos de Basilea II

1.2 Antecedentes

1.3 Enfoques de Riesgo de Crédito

1.4 Enfoques de Riesgo Operacional

1.5 Enfoques de Riesgo de Mercado

2. Riesgo de crédito

2.1 Introducción

2.2 Modelos de Calificación de Cartera

2.3 Medidas de poder predictivo

2.4 Pérdida esperada

2.5 Probabilidades de Transición y de incumplimiento

2.6 Exposición al riesgo de crédito (EAD)

2.7 Severidad de la pérdida (LGD)

2.8 Pérdida no esperada

2.9 Curva de distribución de pérdidas

2.10 Requerimiento de Capital en Basilea II

3. Metodologías de riesgo de crédito

3.1 Metodología de Creditmetrics

3.2 Credit Risk Plus

4. Riesgo operativo

4.1Gestión y proceso de Riesgo Operativo

4.2 Base de datos de pérdidas por Riesgo Operativo

4.3 Proceso de Auto-evaluación (RCSA)

4.4 Indicadores de riesgo clave (KRI)

4.5Distribuciones de probabilidad

5. Basilea III

5.1 Documento del BIS

5.2 Estructura de Capital de los Bancos

5.3 Indicadores de Liquidez

MÓDULO XIII: TÓPICOS AVANZADOS EN ADMINISTRACIÓN DE RIESGOS:

Tópicos Avanzados de Administración de Riesgos

1. Cobertura de riesgo de mercado en ambientes con discontinuidades y valores extremos

2. Cobertura de riesgo de mercado bajo el criterio de utilidad diferencial recursiva estocástica

3. Cobertura de riesgo de mercado en ambientes fractales

4. Medidas de riesgo y coherencia, VaR o no VaR.

MÓDULO XIV: GOBIERNO CORPORATIVO EN INSTITUCIONES FINANCIERAS Y CORPORATIVOS

1. Antecedentes

2. Código de mejores prácticas

3. Principios de la ocde

4. Evolución internacional y local de la institucionalización del gobierno corporativo

5. Marcos de referencia internacionales y nacionales de gobierno corporativo para entidades financieras

6. Rol de los órganos de gobierno en entidades financieras y corporativos

7. Diferencia en el gobierno corporativo de las instituciones financieras, emisoras listadas y empresas privadas

8. Rol de los órganos de gobierno en entidades financieras y corporativos

8.1 Comité de Riesgos

8.2 Comité de Crédito

8.3 Comité de Comunicación y Control


Los usuarios que se interesaron por este curso también han mostrado interés por...
Ver más cursos similares